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When astrophysicists measure light from a distant star, they can break up the starlight into its

component colors, creating a spectrum from long wavelength red to short wavelength blue, by

beaming the light through a mechanical prism. Similarly, when geophysicists measure a planet's

magnetic field, they can break up the field into long and short wavelength components by

running the data through a kind of digital prism called "spherical harmonic analysis." And much

as astrophysicists can say much about a star's surface and interior from its optical spectrum,

geophysicists can infer something about a planet's crust and core from its magnetic spectrum.

Earth's magnetic spectrum is determined from measurements made at magnetic observatories,

along land, ocean, or aero-magnetic survey lines, and from global satellite magnetic surveys such

NASA's Magsat and Denmark's Oersted satellite. Mars' magnetic spectrum can now be

determined from measurements made by NASA's Mars Global Surveyor.

Earth's magnetic spectrum shows both a powerful, long-wavelength, core-source magnetic field,

caused by electric current in its liquid iron outer core, and a short-wavelength crustal-source

field, caused by magnetization of crustal rock. For Mars, however, there is no sign of a core-

source field. Moreover, the traditional model for interpreting the geomagnetic spectrum does not

work for Mars. Fortunately, A new theoretical model of planetary magnetic spectra, developed

for Earth's crust, also works well for Mars.

The new spectral method for distinguishing crustal from core-source magnetic fields has now

been applied to both Earth and Mars. The spectra are fairly fitted by theoretical forms expected

from certain elementary classes of magnetic sources. For Earth we find fields from a core of

radius 3512 + 64 km, in accord with the seismologic core radius of 3480 km, and from a crust

represented by a shell of random dipolar sources at radius 6367 + 14 km, near Earth's mean

radius of 6371.2 km. For Mars we find no sign of a core-source field, only a field from a crust

represented in same way, but at radius 3344 + 10 km, about 46 km below Mars' mean radius of

3390 km, and with sources about 9.6 + 3.2 times stronger than Earth's.

The magnetic crustal shell depth agrees well with the mean depth of Mars lithosphere inferred by

independent analysis of independent MGS topography and gravity data.

Our results indicate Mars has a thicker, more intensely magnetized crust than Earth. This may in

part be due to an iron-rich crustal magnetic mineralogy for the Red Planet, magnetized by a now

defunct core-dynamo. Curiously, owing to its strong, short-wavelength magnetic anomalies, the

Red Planet has a much 'bluer' magnetic spectrum than the Blue Planet.
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Abstract: The spectral method for distinguishing crustal from core-source magnetic fields is re-

examined, modified, and applied to both a comprehensive geomagnetic field model and an

altitude normalized magnetic map of Mars. The observational spectra are fairly fitted by

theoretical forms expected from certain elementary classes of magnetic sources. For Earth we

find fields from a core of radius 3512 + 64 km, in accord with the seismologic core radius of

3480 kin, and a crust represented by a shell of random dipolar sources at radius 6367 + 14 km,

near the planetary mean radius of 6371.2 km. For Mars we find no sign of a core-source field,

only a field from a crust represented in same way, but at radius 3344 _+ 10 km, about 46 krn

below the planetary mean radius of 3389.5 km, and with sources about 9.6 + 3.2 times stronger.

1. INTRODUCTION

Geophysical interpretations of planetary magnetic field measurements may differ because

knowledge of the field outside a planet alone does not uniquely determine the distribution of

magnetic sources inside the planet. Physical constraints on possible sources reduce such non-

uniqueness, as do mathematical restrictions on the source distributions considered. With enough

restrictions, one of the many source distributions that are equivalent to, or at least closely fit, the

measured field can be determined.

Such a deterministic field model may aid mapping, interpolation, separation of fields

originating outside the planet, noise reduction, and interpretation. Because it represents the field

from internal sources, if not the true sources themselves, a deterministic model might also be

combined with statistical models of source distributions to make some inferences about the

sources. As an exercise in comparative planetology, we combine deterministic and statistical

approaches to the magnetic fields of Earth and Mars.



In practice, after correctingfor externalsources,a terrestrial field that varies over broad

length scalesis often attributedto electriccurrentin Earth's core,subtractedfrom nearsurface

geomagneticmeasurements,andtheresidual,narrowerscale,field attributedto magnetizationof

Earth's crustandlithosphere.Separationof crustalfrom core-sourcefields basedon lengthscale

may also be attemptedin the spectralwavenumberdomainof a Fourier-Fouriertransformed

regional magnetic survey or a Fourier-Legendre(sphericalharmonic) model of the global

magneticfield. Among suchseparations,perhapsthe mostwidely acceptedarethosebasedon

spherical harmonic analysesof Magsatdataby Langel & Estes [1982] and by Cain et al.

[1989b].

Here we re-examine spectral separation of core from crustal-source fields, adopt some

modifications suggested by theoretical consideration of planetary crustal sources, and apply them

to both a comprehensive geomagnetic field model [Sabaka, Olsen & Langel, 2000] and an

altitude normalized magnetic map of Mars [Purucker et al., 2000].

2. BACKGROUND AND NOTATION

Consider magnetic flux density B at time t and position r in planet centered spherical polar

coordinates (r, 0, _) due to amperian currents and magnetization within a reference sphere of

radius a. Above this sphere, solenoidal B(r,t) can be represented as the negative gradient of an

internal scalar magnetic potential V(r,t) such that B = -VV. The potential satisfies Laplace's

equation and has well-known spherical harmonic expansion

oo /l

V = a Z (a/r) "+_ Z [g,m(t)cosmO0 + hnm(t)sinmO0] P,m(cosO), (1)

n=l m=O



where [gin, hnm] denote the Gauss coefficients, and p m denotes the Schmidt normalized

associated Legendre polynomial, of integer degree n and order m. Coefficients through finite

degree N can be estimated by fitting the gradient of a truncated expansion to measured planetary

magnetic data (see, e.g., Langel [1987]). Harmonic representation (1) is equivalent to a planet

centered multipole moment expansion. It is used for efficiency, not physical plausibility: planet

centered point multipoles are not true sources.

The mean square magnetic field described by harmonics of degree n, averaged over a

spherical surface of radius r containing the sources, is given by

n

R,,(r, 0 = (n+ l)(a/r) 2"+4 Z ([g,m(t)]2+ [kn_(t)] 2) (2)
m=0

(see, e.g., Lowes [1966]). As a function of n, R n forms a discrete (line) spectrum called the

spatial magnetic power spectrum of the planet. Although R, has units of (Tesla) 2, the magnetic

energy density per harmonic degree integrated over the surface, which is just 2_PR,/_t o in

vacuum permeability l.t0, indeed has units of spatial power (J/m) or force (N). Each individual R,

represents a centered multipole power (e.g., dipole power R_, quadrupole power R2, hexapole

power R3, etc.). Reliable estimates of R, for either Earth or Mars are, at present, available only

for degrees less than 100, and perhaps less than 50.

As averages over a centered sphere, multipole powers are invariant under coordinate system

rotations. This is not true for translations, as exemplified by the spectrum due to a single point

dipole of vector moment m -- M/go offset to position r_

R,SD(r) = (4rtr3) -2 (r x/r) 2"2 [n2(n + l)Mr z + n(n + 1)2(Mo 2 + M,2)/2] (3)
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(see, e.g., Voorhies [1998]). There is no radius r > rx > 0 at which the attenuated cubic spectrum

(3) becomes independent of n. Moreover, a well offset radial dipole produces almost twice the

power of a similarly offset horizontal dipole of equal absolute moment. The single area of very

strong field directly above the radial dipole contributes more to the mean square field than the

two areas of strong field somewhat further from the horizontal dipole due to the anisotropic

inverse cube law for dipolar fields.

3. THEORETICAL CRUSTAL MAGNETIC SPECTRA

Now consider a large number of dipoles with random moments M k (k = 1,2,3, ... K) scattered

on a sphere of radius rx. Dipole positions r k amount to random samples of a laterally uniform

distribution and are thus expected to be laterally uncorrelated: {rkerk, } = Fx2_kk ,, where curly

brackets denote expectation value and Kroenecker _Skk,is unity if k = k' and is otherwise zero.

For randomly oriented dipoles, any particular orientation is as likely as its opposite and there is

no reason to expect either cross-correlated components for any individual moment or cross-

correlated moments between different dipoles; however, auto-correlations remain perfect. With

components of M k denoted Mi k (i = r, 0, or dp), the expected situation is summarized via zero

mean dipole moments of diagonal covariance:

k} = 0

{M_k M_,k' } = S,, 8kk, {M2}/3,

where {M 2} is the mean square moment of the K dipoles.

(4a)

(4b)

Although the expectation value of the

vector field above the spherical shell is zero, the expected field intensity is not. Indeed, the

spatial magnetic power spectrum expected from a spherical shell of such randomly oriented

dipoles is just the sum of individual spectra (3):



K{M 2} rx 2n-2

{R,(r)} ss - n(n + 1)(2n + 1) ( -- ) (5a)

3(4nr3) z r

= Ax n (n + ½)(n + 1)(G/a) 2"2 (a/r) 2"÷4, (5b)

where Ax - (2/3)K{M z} (4rca3) -2. The root sum square (rss) magnetic dipole moment per unit area

(K{M 2})v2(4n_t0rx2) -_ has units of Ampere-turns and equals (3Ax/2)_a(a3/goG2 ).

Extrema of (5) with respect to n are readily calculated; there is typically a spectral maximum

near degree 3/[21n(r/G) ]. For example, at terrestrial reference radius r = aE = 6371.2 km, a shell

depth (aE - rx) of either 10, 20, or 40 km gives a spectral peak at degree 954, 477, or 238,

respectively. At the 3389.5 krn mean radius of Mars [Smith et al., 1999], a shell depth of 20, 50,

or 100 km gives a peak at degree 253, 100, or 50, respectively.

Of course, the magnetic field from a real planetary crust includes the superposition of fields

originating in a very large number of very small rock magnetic domains. Well above the crust,

the field from each domain is closely approximated by that from a point dipole. At an instant in

geologic time, these crustal sources may thus be regarded as a sample of an ensemble of dipole

distributions. If a small scale geologic structure has a fairly uniform magnetization which differs

from that of the country rock, then its field can be approximated by that of domain dipoles which

are strongly correlated over the few km size of the structure. (Examples might include a granite

batholith, andesite diapir, basalt flow, salt dome, or metamorphic lens in Earth, or a hematite-rich

dune, knob, or small crater on Mars). To treat domain dipoles as if randomly oriented would

thus seem to neglect coherently magnetized geologic structure and focus on background noise.

Yet when measured at satellite altitudes of a few hundred kin, the field from such a localized

structure should be well represented by a single point dipole. When such measurements are
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representedin termsof expansion(1), manycompactcrustal-sourcecontributionsto low degree

multipole powers(2) shouldthusbefairly well approximatedby (5).

When the field well abovea clusterof nearby,roughly vertical sourcesat a given depthis

fitted with but onedipole,the strongestfield andits fall off with altitudetendto bemoreclosely

fitted by placing the singlestrongerdipole at greaterdepth. The extrastrengthand depthshift

spatialmagneticpowerfrom higherto lowerdegreesby (3). Useof spectrum(5) may similarly

overestimatethetruedepthof laterallycorrelatedsources.

Significant lateral source correlation over broad scale geologic provinces (such as an

orogenicbelt, subductionzone,continentalshield,or oceanbasinonEarth,or ahighlandor large

impactbasin on Mars) suggestssubstantialdeviationsfrom (5), perhapsby a factor of two or

more. Relativeto a decorrelatedcrustgiving thesamemeansquarefield at agivenaltitude,such

broadstructureis alsothoughtto shift spatialpowerfrom higherto lowerdegrees.Realgeologic

structuresmay thusproducea morenearlyexponentialmagneticspectrumthan (5), perhapsan

attenuatedquadraticin n; however, it is not yet clear that the purely exponential form assumed

by Langel & Estes [1982] and Cain et al. [1989b] is expected from magnetic sources distributed

in a roughly oblate spheroidal layer with heterogeneous, scale-variant, and anisotropic two-point

correlation functions. As shown below, crustal thickness, oblateness, source polarization and

correlation do change (5) in ways that can be critical to its application and interpreting results.

3.1 Randomly Magnetized Oblate Spheroidal Layers

Variations of spectrum (5) have been derived to account for layer thickness, eIlipticity,

sources aligned by a reversing main field, and all combinations thereof [Voorhies, 1998]. For a

thick spherical layer, or spherical annulus, of randomly oriented (and positioned) dipoles, the

expectation spectrum is that obtained by Jackson [1990], here written



w-

r_ + d 2n+l r_ - d 2n+l

{R,,(r)} s_ = Ax _ (2na3/X) n (n + 1) [ ( ---:-- ) ( _ ) ] (a/r) 2"+4, (6)
a a

where 2d denotes layer thickness; rx - d is the inner, and rx + d the outer, radius of the annulus;

and Xrepresents the annular volume.

For a thin layer with 2d/r x << 1, the thickness factor (the ratio of (6) to (5)) becomes

important for degrees near or exceeding rx/2d. For example, with rx + d set to a E and 2d set to 40

km, rx/2d is 159 and the thickness factor is but 1.10 at degree 120; yet it increases to 2.10 at

degree 360 and reaches 10.2 at degree 720. At lower degrees the square bracketed term is

approximately (2n+l)(2d/rx)(rx/a) 2"+_, so partial derivatives of (6) with respect to thickness are

approximately proportional to partials with respect to amplitude. Amplitude and thickness may

thus be nearly colinear, hence virtually inseparable from a low degree observational spectrum

alone: an increase in magnetization amplitude can be compensated by a decrease in layer

thickness and vice versa.

For thick layers or high degrees n >> rx/2d, expectation spectrum (6) approaches an

exponentially attenuated quadratic in n instead of the cubic (5); indeed, for a ball of random

dipoles (r x = d = a/2) it is proportional to n(n+l)[(rx+d)/r] z"+4. Effects of lateral source

correlation on R, might thus be mistaken for those of a very thick layer; alternately, the spectrum

from a bail of random dipoles might be used as a proxy for such effects.

Because neither (1) nor (2) represent sources above the reference sphere, partial sums of a

spectrum evaluated on too small a sphere may diverge due to the ellipticity and topography of a

magnetized planetary crust (e.g., magnetization of Mount Kilimanjaro if not Olympus Mons).

For example, consider an ellipsoidaI shell of semi-major axis a_, semi-minor axis b x, volume
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na,,Zb,,, eccentricty e (e2 _ 1 - (bx/ax)2), and area A e = 2nax 2 + nbx:e 1 ln[(l+e)/(1-e)]. The spatial

magnetic power spectrum expected from randomly oriented dipoles scattered on such an oblate

spheroidal shell is

{R,(r)} eS = (4rcrZ/Ao) (ax/rx) 2" Qn {R,(r)}", (7a)

where {Rn(r)}"' on the right is from (5) and, in terms of_ ,2 = (ax/bx) 2 -1 (dubbed "coeccentrcity")

and parameter cz2 = 272 + 74,

1

Q, = J" (1 + 72x z)-"-l[l+ a 2x2] lndx. (7b)

0

For terrestrial 72 [Nerem, et al., 1994], Q, decreases from 0.97 at degree 12 to 0.36 at degree 900;

however, if (7a) is evaluated at r = aE < ax, the factor (G/aE) 2" increases from 1.06 to 91.4.

Elevation of randomly oriented dipoles on the equatorial bulge thus contributes more to the

expectation spectrum than is removed by depressing such sources near the poles. As anticipated,

the ellipticity factor (the ratio of (7a) to (5b)) becomes important at degrees near or exceeding the

reciprocal flattening ax/(a x- b_). For Earth, this factor is 1.166 or more for n > 298; yet Mars'

flattening is 1/170 [Smith et al., 1999].

Finally, consider an obIate spheroidal annulus of invariant eccentricity, hence variable

thickness. At the top of the layer 1"2(0) = a_2(1 + 7Zoos20); at the base of the layer of equatorial

thickness 2d, r2(0) = (ax - 2d)2(1 + 7%os20)- The spectrum expected from random dipoles (4)

distributed uniformly throughout such an ellipsoidal annulus is

ax 2n+ 1 ax - d 2n+ 1

{Rl,(r)} _a = Ax _ (2r_a3/Xea) n(n+l) Wn (--) [1 - (--) ] (a/r) 2n+4 , (8a)

a a_



whereX_a denotes annular volume 47taxbx(2d)[1 + 2d/a_ -

1 +ot2x z1

w. = I (1 + v2x2)-"-'[ ],,2dx.
0 1 + 72 x 2

(2aC/ax)2/3] and

(8b)

For thin layers of small eccentricity, the ratio of spectra (8a) to (5a) is approximately the product

of thickness and eUipticity factors. For a layer of 52 km equatorial thickness and the

coeccentricty of Mars, the exact ratio reaches 1.41 at degree 90 (still less than a factor of 2).

3.2 Random Polarity Shells and Layers

Thermoremanent magnetization (TRM) of igneous rock cooling in a planet centered axial

dipole field that can reverse polarity suggests non-randomly oriented domain dipoles. Post-TRM

reorientation of domains by crustal deformation, sea-floor spreading, and continental drift;

metamorphic remagnetization; true polar wander; and erosion may arguably lead to a terrestrial

crustal spectrum more akin to that of randomly oriented dipoles than random polarity dipoles.

Yet contrasts in magnetic susceptibility still indicate a main field aligned component of induced

magnetization in Earth's crust. Magnetic spectra for ensembles of offset, uncorrelated dipoles

aligned either parallel or anti-parallel to a centered dipole field [Voorhies, 1998] are thus

summarized physically as follows.

The ratio of the spectrum expected from such random polarity dipoles on a shell to spectrum

(5b) is (5/4)(n + 1/5)/(n + ½), provided K{M z} and r x are the same. All else being equal,

multipole powers from random polarity dipoles are about 25% more than from randomly

oriented dipoles. This is attributed to the near radial orientation and typically strong moments

{2M 2}112of field-aligned dipoles located near the poles. This surplus power from the polar



\

regions evidently exceeds the deficit due to the nearly horizontal orientation and typically weak

moments {M2/2} v2 of sources near the equator.

For a thin spherical annulus, variations of field aligned sources with depth due to the small

change in the centered dipole field with depth are omitted along with deviations of the polarizing

main field from a planet centered dipole. The ratio of the expected spectrum from random

polarity dipoles in a spherical annulus to that from such sources on a shell is then same as the

ratio of spectra (6) to (5). This thickness factor remains near unity for degrees less than the

radius-to-thickness ratio of the annulus.

Curiously, the ellipticity factor for random polarity dipoles on an oblate spheroidal shell can

be less than unity for low to intermediate degrees. This is because the stronger, nearly radial

domain dipoles near the flattened poles are now further from a source containing sphere on

which R, is evaluated. As expected, the corrections are appreciable at degrees near or exceeding

the reciprocal flattening (e.g., -18% at n = 300 in the terrestrial case). At sufficiently high

degrees (e.g., 720), however, the ellipticity factor again exceeds unity. The spectrum expected

from random polarity dipoles distributed uniformly throughout an oblate spheroidal annulus can

be closely approximated by the product of thickness and ellipticity Correction factors.

3.3 Spectrum of a Vertically Correlated Crust

Inversions of magnetic data for parameters describing magnetized slabs or equivalent-source

shells are often discussed in terms of"magnetization times thickness". This refers to a vertically

correlated, typically uniform, magnetization. Shell spectra (5) or (7) amount to the simultaneous

limits of vanishing thickness and singular magnetization, so they should approximate the

spectrum from a single, vertically correlated layer of magnetic material, provided the layer is

very thin and its magnetization varies over similarly small lateral scales. In contrast, spectra (6)
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and (8) assumevertically, aswell as laterally,decorrelatedsources;suchspectrafrom a thick,

heterogeneouslymagnetizedlayer do not describe,andought not be mistakenfor, that from a

uniformly magnetizedlayer. Indeed,a randompolarity layer spectrummay well approximate

that from a thick crust composedof sequencesof thin, localized volcanic flows and sills

recordingmanymainfield polarity reversals.

To derive the spectrumexpectedfrom a sphericalannulus of vertically correlated,yet

laterallyuncorrelated,sources,we assigneachdomaindipolea lateralposition index k as before

and, at each k, a radial position index j = 1, 2, 3, ... J for each radius in the range [r_-d, rx+d].

The sum squared magnetic dipole moment becomes KJ{M2}/_o z, but lateral decorrelation rules

(4) still apply and yield

n-1
K{M 2} J J rj rj,

{Rn(a)} vcL - [n(n + 1)(2n + 1)] { E 2; (---) }. (9a)

3(4na_) z j=l j'=l a 2

Each sum in (9a) amounts to Jtimes the mean value of terms. This mean is expected to equal the

volume weighted integral for random samples of a uniform distribution. The sums over discrete

radii are therefore replaced by integrals through the layer, which gives

KJ z {M 2} n(n + 1)(2n + 1) r_+d n+2 rx_d n+2 2

{R,(a)} vce - [ (--) (--) ] , (9b)

3X 2 (n + 2) 2 a a

where Xremains the annular volume. For a relatively thin layer (rid << n and X z proportional to

d2), the squared bracketed term is approximately 4dZ(n+2)Z(rx/a)2"+4; therefore, the ratio of

spectra (9) to (5) only differs appreciably from a constant at degrees approaching rid or more.

(To recover (5a), treat the sums in (9a) as if zero unlessj equalsj '; to recover (6a), collapse them

into one sum replaced by one integral).

11



3.4 Spectrum of a Laterally Correlated Structure

Consider a magnetized spherical cap at radius rx with half angle 0o, non-zero uniform radial

sheet magnetization S]go only for 0 _< 0o, and area A c = 2rcrx2(1 - cOS0o). If this sheet

magnetization represents an array of L radial domain dipoles of identical moments M]]a o, then Sr

= LAIr [2nr,2(1 - cOS0o)] -1 and the total moment of the cap is S_Ac = LMr. Gauss coefficients are

easily evaluated for a cap centered on the north pole; however, the magnetic spectrum from a

uniformly magnetized spherical cap (MSC), being invariant under rotations, does not depend on

the location of the cap on the sphere and is given by

[R.(r;0o)] Msc = (LMJ4rtr3) z (rx/r) 2"2 (n/2)[Z.(Oo)] 2.

The dependence on cap angle is contained in the regular polynomial denoted

(lOa)

sin0 o P,,'(cOS0o)

Zo(Oo) = [ ] = [n(n + 1)/2]-"2(1 + Xo)[dP.°(Xo)/dxo], (lOb)

(1 - cOS0o)

where xo --- cOS0o. In the limit as 0o approaches zero, the cap approaches a point radial dipole, Zo

approaches [2n(n + 1)] 1_2,and spectrum (10a) approaches (3).

For a very small cap, we can expand Z.(xo) in a finite Taylor series about the pole. Well-

known properties of Legendre polynomials p0 allow us to write this expansion in Ax = Xo - 1 <

0 as a normalized deviation from the point dipole value Z.(1),

Z.(xo)-Z.(1) n (Axy j n(n + 1)-k(k- 1)

= 2E 17 (11)

[2n(n+l)] v2 j=l (j+l)! k=l 2k

Provided ]Ax[ < 4/[n(n + 1)], successive terms in summed sequence (11) alternate sign and have

monotonically decreasing absolute values. This is also the condition for the absolute value of the

12
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first term in the sequence to be less than one. This condition fails for n > n*, where n*(n* + i) ---

(8nr_2/A_). Near and above degree n*, the magnetic spectrum from the cap therefore departs from

that of a point dipole, even for a small cap (with 1- cos0 o _ 0o2/2 and n* = [4/(t - cOS0o)] v2

8tn/0o). Physically, edge effects associated with spatial resolution of the cap via harmonics near

and above degree n* cause the spectrum to oscillate with Z, 2 between values near zero and local

maxima. For a (1000 km) 2 cap, n* would be about 31 on Earth and 16 on Mars.

At very high degrees n >> 1, the ringing spectrum from a resolved cap n0o > 1 can be

described via the asymptotic series for p o (see, e.g., Gradshtyn & Ryzhik [1994]). The leading

term in the series is, using Stirling's approximation, just Laplace's formula

P °(cosOo) = (2/nrtsinOo) mcos[(n + ½)0 o - n/4] + 0(n312).

We substitute the derivative of (12a) into (10b) to obtain the asymptotic relation

(12a)

Z.(9o; n >> 1) = [n(n+l)/2]"I2(l+coSOo)[(nrtsin3Oo/2)-'a(n + ½)sin[(n + ½)0o - rt/4]

+ O(n-m)]. (12b)

The asymptotic cap spectrum, obtained by substituting (12b) into (10a), contains the factor

sin2[(n + ½)0 o - rt/4]. Because this factor is at most unity, the upper envelope of local

asymptotic spectral maxima for n >> 1 and non-negligible 0 o > 1/n is, to order n -1 accuracy, given

by the plain exponential

[Rn(r;Oo;n>> 1]MSC< (LMr/4r_r3) 2 (rx/r) 2"-2[(n + ½)2/n(n+ l )](1 +cosOo)Z[2/(rtsin30o)]

< (LMr/4rtr3) 2 (rx/r) 2"-22(1+cosOo)2/(7_sin30o)

< (St rxa/2r3) z (G/r) 2"2 (2/rt)sin0o.
m

(13a)

(13b)

(13c)
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Even for a smallcap(sin0o_ 0o),theenvelope(13b)of theasymptoticspectrumfalls well below

theattenuatedcubicfrom apoint dipole; indeed,theratio of envelope(13b)to spectrum(3) for a

singleradial dipoleof thesametotalmomentis thenjust 8/[r_n3t?o3].

3.5 A Laterally Correlated Crustal Magnetic Spectrum

The total spectrum expected from many independent (uncorrelated) magnetized spherical

caps of various areas A_ and various total moments is just the sum of individual cap spectra. This

sum may be replaced with integrals over cap area and moment distribution functions, but here we

consider qualitatively the spectrum expected from a multitude of very small caps, fewer larger

caps, and no caps larger than half the planetary area. Because extremely magnetic materials

(e.g., lodestone) tend to be highly localized, we shall not assume total moment is proportional to

cap area alone.

At a finite degree no, this total spectrum will consist

distinguished by cap areas relative to Ao = 8nrx2/[no(no + 1)].

of three attenuated contributions

The first is from many relatively

small caps (_ << Ao), which are not well resolved by degrees through no, and is still increasing

in proportion to n 3 near no. The second is from fewer large caps (_ >> Ao), which are fairly well

resolved, and is a superposition of spectra oscillating with different frequencies and phases near

no due to differing half angles 0_ (see (12b)). This contribution amounts to a roughly level value

equal to about half the sum of individual envelopes (13). The third contribution is from caps of

intermediate area (N ._ Ao), for which n o _ n*, and neither increases as fast as n 3 nor has leveled

off.

Similar remarks hold at a higher degree, say 10no with corresponding area of about 10-2Ao;

however, some caps small compared with A o will be of intermediate area compared with 10aAo

14



andsomecapsintermediatecomparedwith A0will be largecomparedwith 102A0. Thenumber

of capscontributingto an n 3 increase of the total spectrum therefore decreases with n itself, so

the net effect of these laterally correlated sources is to soften or redden the spectrum below that

expected from fully decorrelated point dipoles. Still, this total spectrum is only expected to

approximate an unmodulated exponential near and above degrees so high as to correspond to the

smallest caps.

It is possible, and arguably likely, that the magnetic spectrum from a multitude of thin,

irregularly shaped, magnetized crustal geologic structures resembles that from our ensemble of

independent magnetized spherical caps of various sizes and total moments. If so, at low degrees

it would resemble the attenuated cubic (5), while at high degrees, near and above the degree nmax

corresponding to the smallest crustal magnetic structure (say Anli, = 8rCrx2/[nmax(nmax + 1)]), the

cubic modulation gives way to a roughly constant modulation and the spectrum would resemble

a plain exponential.

Clearly nm_x may be much greater than the highest degree N of coefficients that can be

reliably estimated from a set of measured data. If so, the fit of a plain exponential to a reliable

observational spectrum will tend to underestimate the depth of the magnetic structures due to

both compact, intensely magnetized structures and imperfect correlation of elementary sources

within each structure. Moreover, the fit of attenuated cubic (5) to the same observational

spectrum will tend to overestimate the depth to the magnetized structures due to lateral

correlation of elementary sources within each such structure. Source depth may thus be bounded

from both above and below in this case.
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In retrospect, geometric attenuationof a crustal-sourcefield with radius implies an

exponentialdecayof multipolepowersRn with harmonic degree n. This decay is modulated by a

more slowly varying factorp(n) that depends upon the thickness and roughly ellipsoidal shape of

the crust and upon the correlation of magnetic sources within the crust. Theoretical magnetic

spectra for laterally uncorrelated dipolar sources can be derived analytically, specify p(n), and

may approximate the portion of the satellite-altitude spectrum originating in well separated, local

geologic structures. Such spectra yield p(n) which, at asymptotically high degrees, are

approximately proportional to: n 3 for a shell of either randomly oriented or random polarity

crustal-sources; n z for a layer or a ball of such sources; and n I for a layer of vertically Correlated,

but laterally decorrelated, sources. Relative to such spectral forms, the lateral correlation of

sources within extended structures is thought to shift multipole power from higher to lower

degrees. Such correlation can make p(n) roughly constant near and above the very high degrees

corresponding to the smallest significant magnetized crustal structure, if not the rock magnetic

domains themselves. Yet at low degrees, and for nearly spherical planets with thin crusts, all

these modulation factors increase as n 3. A fit of theoretical spectra like (5) to observational

spectra should thus indicate the spectral range of a crustal-source field, although it may tend to

overestimate source depth due to extended magnetic structures.

4. TERRESTRIAL TESTS

Observational magnetic spectra R, for Earth, computed via (2) from the coefficients of

truncated spherical harmonic models fitted to measured geomagnetic data, were used to test

many theoretical crustal spectra {R,} described above. These tests involved fitting theoretical to

observational spectra, so coefficients constrained by assumptions about core or crustal-source

fields were not used. Initial trials used R. from the degree 60 model M102189 and the degree 49
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modelM102389 fitted to Magsatdataby Cain et al. [1990]. The logarithms of multipole powers

were fitted, ln(Rn), rather than the R, themselves; moreover, only degrees 16 and above were

fitted with elementary spectra (see 4.3).

Square misfit to a log-observational spectrum is reckoned by the sum of squared residuals per

degree of freedom, which, when log-multipole powers of degrees nmi,, through N are fitted with P

parameters is

N

s 2 = (N- nmi, + 1-P)-_ 2; [ln(R.)- In{R,}] 2. (14a)

F/_nmi n

The statistical significance of the residuals can be estimated using the inverse covariance of

ln(Rn) to weight the residuals and is considered enormous due to the high precision of Rn

determined by Magsat data analyses. In contrast, deviations from theoretical {Rn} of a factor of

e+-_were anticipated, so our a priori covariance of In {Rn} was the identity matrix. This is thought

to dominate the a priori residual covariance {ln[Rn/{R.}] ln[R.,/{R.,}]} and was used to weight

least squares estimation of the parameters describing {R.}. This estimation requires computation

of the expected parameter covariance, with diagonal elements indicating expected squared

parameter uncertainties. Multiplication of such expectation values by s yields scaled parameter

uncertainty estimates.

Residuals are also summarized by scatter factor F, the exponential of the rms residual

F = exp([sZ(N - nmi n + 1 - P )/( N- nmin + 1)]v2). (14b)

This gives a typical factor (or fraction) by which theoretical values overestimate (or

underestimate) observational multipole powers. Scatter factor F would be 1.00 if all R, were
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fitted perfectly; it would be 2.00 if each Ro was either twice or half the value of {Rn} (so R, =

2+-_{Rn}); etc.. Curiously, we found F < e and s < 1 in practice.

4.1 Initial Trials

Following Langel & Estes [1982], an unmodulated exponential may fit R, closely for n > 16.

Linear regression to in[Rn(a)] for all n > 16 from models M102189 and M102389 indeed gave

small scatter factors of 1.251 and 1.245, albeit leveling altitudes of 208 km and 216 km,

respectively. Following Cain et al. [1989b], one may suggest that multipole powers above some

degree represent noise, assume a degree independent noise spectrum at some altitude, estimate

the noise amplitude, and subtract it prior to the regression.

Instead we fitted ln[R,(aF)] with the spectrum expected from a shell of randomly oriented

dipoles (5). This is equivalent to fitting a line through the log-demodulated spectrum

ln[R,(aE)[n(n + ½ )(n + 1)]1]. The least squares fit to degrees 16-60 of ln[R.(aF)] from model

M102189 gave a shell depth of 63.5 km and a scaled uncertainty of_+12.0 km (_+_36.2 km

unscaled). For the thin shell of random polarity dipoles, the fit gave a shell depth of 64.1 km.

Similar fits to degrees 16-49 of model M102389 gave shell depths of 94.1 + 17.4 km and 95.1

km, respectively.

These source shell depths are thought to overestimate true lithospheric source depths. As a

check, each of these i'our thin-shell crustal-source spectra were extrapolated to high degree and

summed to predict a root mean square crustal-source magnetic field on the reference sphere of

between 122 and 138 nT. Comparison with magnetic observatory biases, coestimated with

models of Magsat data, shows this prediction to be too small by a factor of two to three,

apparently due to the excessive shell depths. Although the four fits give scatter factors between

1.359 and 1.382, or about half the anticipated value e, the inconsistent and arguably excessive
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shelldepthsindicatethat either(/) equation(5) is inadequate,perhapsdueto laterally correlated

sources,(it') the spectrafitted arenot purelycrustal,perhapsdueto ionosphericfields andnoise,

or both. The first interpretationis plausible; indeed,the fit of our proxy for lateral source

correlation,the spectrumfor aball of randomdipoles,to In(R,)of degreesI6-49 from M102389

givesa6375.4+ 15.3km sourceradiusthatdiffers insignificantlyfrom Earth'sequatorialradius.

We must,however,considerthesecond.

4.2 Noiseand Model Noise Spectra

For zero mean, uncorrelated noise in the radial magnetic component of mean square

amplitude {Nr z} on a shell of radius q, {Nr(q) } is zero, as is {Nr(q,0,q_) Nr(q,0',_')} unless (0,q_)

equals (0',q_'), in which case it is {N_2}. The magnetic spectrum expected when L samples of

such noise are (mis-)represented as a single internal potential field,

(2n+l) 2

{R,(r)}N°_sE = (L{N2}/4_) (q/r) 2"+4, (15a)

n+l

is not independent of degree n at any radius (also see McLeod [1996] and note (15a) with q = a is

akin to (9b) with rx+d = a and rx-d = 0). If the noise is redistributed throughout a thick spherical

layer, however, integration of (15a) shows that, for degrees large compared with the radius-to-

thickness ratio of the layer, the noise spectrum approaches a plain exponential which levels off at

the top of the layer.

Of course, observational R, computed from a finite number of Gauss coefficients estimated

via a thoroughly over-determined least squares fit to satellite magnetic measurements should

suffer much less measurement noise than (15a) might suggest. This is because random

measurement errors vary in time, change between adjacent measurements along each ground
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track, changebetweenadjacenttracks,andthustend to producecancelingcontributionsto the

model coefficients. Indeed,by the centrallimit theorem,expectationcoefficients {gnm} and

{hnTM} from such noise alone are zero to within +_[{Rn(a)}N°_SE(2n+l)_L2] 1_2. The model noise

spectrum due to L measurements afflicted by such noise is therefore expected to be down by L-2:

MODEL (2n+ 1)2

{R,(r)} N°_s_ = ({Nr2}/4_L) -- (q/r) 2_÷4. (15b)
n+l

Unlike random measurement noise, theoretical spectra (5-9) and their random polarity

counterparts are not reduced by L -2 because crustal signals measured far above the sources

remain correlated (along and across tracks), even if the sources are not.

For noise above the reference sphere (q > r = a), reference noise spectra (15) increase

monotonically with n. If the noise is uncorrelated with crustal signal, its spectrum can be

subtracted from observational Rn(a). This correction removes more power at higher than at lower

degrees; therefore, a fit of spectrum (5) to a corrected observational spectrum will yield a smaller

source shell radius than obtained without correction. The excessive source shell depths found

above are therefore not attributed to random measurement noise. Demodulation for thickness

factors from (6) or (9c) also reduces mean source radius, while ellipticity factors differ negligibly

from unity at degrees as low as 60.

The 0.091 nT 2 noise level of Cain et al. [1989b], obtained from n > 50 of a numerical

integration model [Cain et al., 1989a], implies a rss contribution to a degree 60 field model of

about 2.3 nT at 420 km altitude. This is about the rss error expected from uniformly distributed

Magsat attitude errors of at most 20" in the ambient field. Yet (15b) makes it doubtful that such

errors afflict a least squares model fitted to over 49,000 select Magsat data, such as M102389.
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The noise level might insteadbe due to binning data from very different altitudesprior to

numericalintegration;if so,it alsooughtnot afflict M102389. Thealiasingof anysignalin the

degree50-60 coefficientsof M102189,which were omitted from M102389, changesR, but

slightly, as shown by the small scatter factor (1.0248) between the models through degree 49.

The possibility of aliasing ionospheric signal remains. Cain et aL [1989a] were careful to

apply long wavelength mean ionospheric field corrections to separated dawn and dusk Magsat

data, but intermediate and short wavelength mean ionospheric signals remain in the data, as do

deviations from the mean. The former arguably arise from mean auroral and equatorial

electrojets, near-terminator Sq, and perhaps other currents. If so, they should be correlated in dip

latitude and magnetic local time, partially decorrelated in Earth-fixed coordinates, yet, like

deviations from the mean, strongly correlated along short arcs of the near polar dawn-dusk orbit.

If not explicitly parameterized, such fields might contribute more to R. than (15b) would suggest,

and perhaps in a different way.

4.3 Second Trials and Core-Sonce Spectrum

Unintended ionospheric source contributions to R, should be reduced by a more

comprehensive geomagnetic field model such as CMP3 [Sabaka et al., 2000], which uses

Magsat, POGO, and observatory data to coestimate parameters describing: the main geomagnetic

field through degree and order 65; secular variation; the ionospheric field due to Sq, including

the equatorial electrojet, and field aligned currents; and magnetospheric source fields. In

particular, the use of quasi-dipole coordinates enables efficient separation of narrow scale mean

ionospheric-source fields from similarly narrow scale crustal-source fields. Here we use only the

main field coefficients at reference epoch 1980, centered on the high precision Magsat data.
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Thelog-observationalmultipole powersfor degrees16-65of modelCMP3werefitted in the

secondsetof trials. For thespectrumexpectedfrom ashellof randomlyorienteddipoles(5), the

leastsquaresfit to ln[Rn(a_)] gives:a sourceshelldepthof 5.6km belowthe6371.2km reference

sphere,ananticipateduncertaintyof +31.2 km, anda scaleduncertaintyof +13.2km. The fit

with a thin shell of randompolarity dipolesgives a sourceshelldepthof 6.3 km with a scaled

uncertaintyof +13.3 km. Thesesourcedepthsare thoughtto approximatetrue crustal source

depths;however, they can be increasedby source-layerthicknesscorrectionsand/or noise

corrections. Thelargescatterfactor(F = 1.52)may in partbedueto partially correlatedsources

distributedin aroughlyoblatespheroidalannuluswith abi-modaldistributionof layer thickness.

Indeed,we find a systematicincreasein sourceshelldepthwith thechoiceof maximumN < 65

fitted that is consistent with lateral source correlation.

A core-source magnetic spectrum is needed to complete spectral separation of crustal from

core-source fields. The theoretical core-source spectrum for Earth's magnetic field used here

generalizes relations advanced by Stevenson (1983) and McLeod (1996) and is

n + ½ 2n+4

{R,(a)}c = Kc (Cm/a) (16)

n(n+l)

Linear regressions to ln[n(n+l)R,(a)/[n+ ½]) for degrees 1 through N of model CMP3 yield

magnetic estimates of the core radius cm. The estimates are listed in Table 1 along with square

misfit s z for N data fitted with two parameters (14a), scaled uncertainty, and error relative to

seismologic core radius of 3480 km. As N increases misfit tends to decrease to the minimum at

degree 12 and estimated core radius remains quite stable at 3.5 Mm. As N is increased to 13 and

then 14, however, misfit increases and then decreases, while cm begins a monotonic increase.
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Both misfit and cm climb steadily as N is increased to 15 and above. Evidently, non-core source

fields contribute to R n for n > 13 and markedly so for n > 15. Moreover, errors in Cm are

statistically significant for N > 13 in that they exceed scaled uncertainties. From Table (1) we

infer that: (i) a core-source field dominates the geomagnetic spectrum at degrees 1 through 12;

(ii) non-core-source fields contribute significantly to this spectrum at degrees 13 and above; and

(iii) non-core-source fields dominate the spectrum at degree 16 and above.

Curiously, with the exception of a spherical ball of measurement noise, which ought not be

represented as a potential field, none of the magnetic spectra derived for measurement noise, a

crustal-source field, or a core-source field, give the unmodulated exponential suggested by Lowes

[1974] and assumed by many workers (see Appendix).

5. APPLICATION TO EARTH AND MARS

Figure 1 shows spatial magnetic power spectra of Earth (solid circles through degree 65) and

Mars (crosses through degree 90) near the planetary surfaces. The spectrum for Earth, shown at

geocentric radius 6371.2 km and epoch 1980, is computed directly from the coefficients of model

CMP3 by Sabaka et al. [2000]. The spectrum for Mars, shown at areocentric radius 3393.5 km,

is computed from the equivalent source model of binned Mars Global Surveyor data by Purucker

et aL [2000]; the l°xl ° bins are but 10 km in radial extent. The radial field component from that

model, evaluated on a 0.5 ° regular mesh at satellite altitude 3593.5 kin, was used to compute

spherical harmonic coefficients through degree and order 90, and then 120, via numerical

integration (accurate to sixth order in A0 and to 10 ppm rms in radial field). These coefficients

are used to calculate the Rn at altitude, which are then downwardly continued 200 km and shown
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in Figure 1. Due to gaps in the low altitude data coverage, we have some reservations about the

observational spectrum above degree 40 or 50.

Visual examination of Fig. 1 suggests Earth's magnetic spectrum is dominated by a core

source field for degrees 1-12 and by a crustal source field for degrees 16-65. The spectrum for

Mars shows no clear sign of a core source field. Moreover, it is not consistent with a degree-

independent spectrum at any radius: a line fitted through the low degrees would predict far more

power at high degrees than is observed, while a line fitted through the high degrees would predict

far more power at low degrees than is observed. A sum ofunmodulated exponential forms for R,

is therefore not consistent with this observational spectrum for Mars. The need to modify plain

exponential crustal spectra ofLangel & Estes [1982] and Cain et al. [1989b] along the lines of

(5) is clear.

5.1 Mars

The two parameter curve fitted through degrees 1-90 of Mars' magnetic spectrum (crosses)

shown in Fig. 1 is that expected from a spherical shell of random dipoles (5a). The estimated

shell radius is 3342.8 km; the scatter factor is 1.60. The estimated shell depth is 46.7 + 6.8 km

below the mean planetary radius (unscaled uncertainty). The spectrum from a shell of random

polarity field aligned dipoles gives a scatter factor of 1.63 and a shell depth of 47.7 + 6.8 km.

The difference in scatter seems unimportant; indeed, the scatter exceeds that obtained fitting the

same spectral form to degrees 16-65 of terrestrial spectrum CMP3.

The decorrelated source shell is below the equivalent source shell at 3393.5 km; the latter

sources are evidently correlated by the fit to MGS data, so it can be argued that the true sources

are at depths less than or equal to 50 km. As anticipated from laterally correlated sources, a

somewhat smaller scatter factor of 1.40 is obtained when the observational spectrum for degrees
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1-90 is fitted with our proxy quadratic form (appropriate to a ball of random dipoles). The ball

radius of 3394.5 + 6.9 km is indistinguishable from the 3396.2 km equatorial radius of Mars.

Estimated source radii are, however, not very stable to major changes in truncation level. The

first and second columns of Table 2 show the systematic increase of shell radius with maximum

degree N fitted for randomly oriented and random polarity dipoles, respectively. The third

column shows the estimated ball radius as a function of N. The instability is due largely to low

degree multipole powers, perhaps because the equivalent source model itself omits design matrix

elements corresponding to source-to-measurement separations exceeding 1500 km, hence a 3000

km scale.

Because fields of degree n* contain considerable structure on scales as small as

[(Srca2/n*(n*+l)] 1_, we expect appreciable errors in coefficients of degrees below 6 and perhaps

orders below 8 (using 2_a/m). Moreover, the degree n* corresponding to twice the typical 111.9

km equivalent source spacing is 76. Truncation of the fit at or near this degree otten yields a

shallow minimum in square misfit, perhaps because equivalent source fields become laterally

correlated on the scale of source-spacing.

The 1500 km cutoff means the potential field at different points is computed from different

sources. The spectrum from the equivalent source field computed without the cutoff therefore

differs from that obtained with the cutoff, particularly at low degrees. Omission of the cutoff

reduces R 1by a factor of 3.54; the scatter factor between the two spectra for degrees 1-5 is 1.818,

but only 1.083 for degrees 6-10. Table 3a shows estimated source-shell radius and misfit s as

functions of the range of degrees fitted for the spectrum with the 1500 km cutoff (first two

columns) and without the cutoff (second pair of columns). Table 3b shows the corresponding
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quantities for the ball of random dipoles - our proxy for laterally correlated sources. The

tabulated s are based on two rather than four parameters.

For the arguably safe degrees 6-76 of the spectrum without the 1500 km cutoff, the shell

model and unscaled uncertainties give

{Rn(a)}Ma_ = (0.3525 + 0.0956) n (n + ½)(n + 1)

[(3343.6+9.7)/3393.5] 2ha (nT) 2 , (17a)

a scatter factor of 1.33, and a slightly smaller misfit than does the ball model. For degrees 6-76

of the spectrum with the cutoff, the shell model gives

{R,(a)}M,_ = (0.3478 + 0.0943) n (n + ½)(n + 1)

[(3344.0 + 9.7)/3393.5] 2n2 (nT) 2 (17b)

and a scatter factor of 1.34.

Undulations in the observational spectrum also cause fluctuations in misfit as a function of

harmonic degrees fitted. The undulations in the spectral domain are thought to be a modulation

resulting from the famous spatial confinement of Mars' strongest magnetic features to a region of

the ancient southern highlands, as discovered by Mars Global Surveyor [Acuna et al., 1999;

Connerney et al., 1999]. The strong lateral correlations evident in magnetic maps of Mars

confirm that deviations from the decorrelated shell spectrum (17) are of high statistical and

planetological significance. Yet our decorrelation shell depth of 46 km provides strong support

for the shallower values used by Connerney et al. [1999] to model individual anomalies with

laterally correlated magnetized slabs.

5.2 Earth

The curve fitted through terrestrial spectrum shown in Figure 1 is the sum of a core-source

spectrum (16) and that expected from a spherical shell of random dipoles (5). To obtain this
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curve,we rely on the identificationof somenon-corefields at degreesgreaterthan 12 (see4.3).

Theinitial fit of corespectrum(16) to degrees1-12of theCMP3spectrumis subtractedfrom the

higher degreemultipole powers. Shell spectrum(5b) is then fitted to degreesnmin through N.

This preliminary crustal spectrum is used to correct the degrees 1-12 for a crustal-source field.

The core spectrum is then re-estimated, and the procedure repeated. The best fit to the ln(R,) is

obtained for n,,i, = 16, N = 65 and is

n+½

{R,(a)}Ea_ = (4.4904 +_0.8718) x 10 _° [(3512.5 +_63.6)/6371.2] z"+4

n(n+l) (18)

+ (1.1354 + 0.2120) x 10 .3 n (n + ½)(n + 1)[6366.7 + 13.5)/6371.2] 2".2 (nT) z

with scaled uncertainties based on 5 parameters (to include nmin). Note that model spectrum (18)

omits correlation between core and crustal source fields, as well as laterally correlated crustal

source fields. For these reasons, observational multipole powers of intermediate degrees 13, 14

and 15 were not used to estimate amplitudes and source radii in (18); however, the prediction

errors of (18) for intermediate degrees are included in the misfit, the determination of nmi, = 16,

and the uncertainties. Model spectrum (18) underestimates the observational spectrum in the

overlap region. This may in part be due laterally correlated magnetization on the scale of

continents and ocean basins augmenting the signal from core and other crustal sources.

6. SUMMARY

The spatial magnetic power spectra of Earth, as obtained from the comprehensive model of

Sabaka at al. [2000], shows clear signs of two distinct classes of internal sources: a core source

field and a crustal source field. Spectral analysis shows harmonic degrees 1-12 to be dominated

by sources in a core of estimated radius 3512 + 64 km; degrees 16-65 are fitted to within a

27



i %
w

w

typical factor of 1.5 by random sources on a crustal shell of radius 6366.7 + 13.5 km. Spatial

power at intermediate degrees 13, 14, 15 exceeds that expected from the sum of simple core and

crustal spectra, perhaps due to crustal sources correlated over continental scales. The magnetic

spectrum of Mars obtained from MGS data via the equivalent source model of Purucker et al.

[2000] shows no sign of a present day core source field; the entire spectrum at degrees 1-90 and

the more reliable degrees 6-76 are fitted (to within scatter factors of 1.6 and 1.3, respectively) by

random sources on a shell of radius 3344 + 10 km. The same theoretical form for a crustal

source spectrum fits the observational spectra of both planets better than anticipated, with Mars

having a deeper, and more strongly magnetized crust than Earth. Indeed, from the amplitudes Ax_

and shell depths, the ratio of rss magnetic dipole moment per unit area (K{M2})l/Z(47_l.torxZ) "l for

Mars' crust to that for Earth's crust is about 9.6 + 3.2. We stress that both planetary spectra

show very significant deviations from these theoretical forms. These deviations are attributed to

physically significant fluctuations in Earth's core source field and to laterally correlated sources

in the magnetic lithospheres of Earth and of Mars.
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APPENDIX: Unmodulated Spectra

Following Lowes [1974], and for comparison with Table 1, linear regressions to In[Rn(aF) ] for

degrees 1 through N of model CMP3 yield estimates of spectral "leveling radius" shown in Table

A.1, alongside square misfit, scaled uncertainty, and the offset of the leveling radius from the

core-mantle boundary. The fit is not as close as shown in Table 1 due to omission of the

modulation factor; moreover the leveling radius is unstable, tends to increase with N, and differs

significantly from the core radius.

Following Langel & Estes [1982], dipole power can be excluded to tighten the fit to the low

degree non-dipole spectrum. Table A.2 shows the resulting leveling radii along with square

misfit (for N-3 degrees of freedom), scaled uncertainty, and the offset from the CMB. Table A.2

shows less misfit than either Table A. 1 or TabIe 1; yet the leveling radius is much less stable than

cn,. Indeed, non-dipole leveling radius decreases from 4.1 Mm to 3.2 Mm as N increases from 4

to 8, remains near 3.3 Mm as Nincreases from 8 to 12, then increases with N as non-core source

contributions are fitted. The error of mistaking leveling radius for core radius is statistically

significant for 14 > N> 8 in that the offset exceeds scaled uncertainty. The agreement at degrees

15 and 16 appears fortuitous. We infer that an unmodulated exponential fits the low degree non-

dipole spectrum quite closely, but is not as reliable an indicator of core radius, hence

predominantly core-source field, as is (16). Degrees 13, 14, and 15 still include some core-

source contribution. As with the purely exponential spectrum itself, theoretical justification for

excluding dipole power remains elusive.
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TABLES FROM TEXT

Table 1: Core radius estimates from model

CMP3 and error relative to seismologic estimate

Degrees s 2 Core Radius Error

Fitted km km (%)

1-4 0.7207 3467 + 658 13 (0.37)

1-5 0.4815 3498 +38;4 + 17 (0.50)

1-6 0.3612 3503 +252 + 23 (0.66)

1-7 0.2899 3520+179 + 40 (1.15)

1-8 0.2786 3431+140 49 (1.41)

1-9 0.2821 3512 + 120 + 32 (0.91)

1-10 0.2479 3501 + 96 + 2I (0.60)

1-11 0.2214 3510+ 79 + 30 (0.87)

1-12 0.1994 3513 + 66 + 33 (0.96)

1-13 0.2046 3548+ 59 + 68(1.95)

1-14 0.1996 3570+ 53 + 90(2.60 )

1-15 0.2537 3619+ 54 +139 (4.01)

1-16 0.3826 3685 + 62 +205 (5.90)

1-17 0.6817 3776 + 77 +296 (8.51)

1-18 0.9669 3862+ 86 +382(11.0)

Table 2. Estimated source radius for models

of Mars' magnetic spectrum and unscaled

uncertainty in km.

Degrees Shell of Shell of Ball of

Fitted Random Random Random

Dipoles Polarity Dipoles

1- 5 2357 +373 2311 +365 2764 +437

1-10 2980 +164 2955 +163 3293 +181

1-15 3195+ 95 3180+ 95 3438 +103

1-30 3267+ 34 3261+ 34 3405+ 36

1-45 3304+ 19 3302+ 19 3402+ 20

1-60 3326+ 12 3324+ 12 340I+ 13

1-75 3334+ 9 3332+ 9 3395+ 9

1-90 3343+ 7 3342+ 7 3394+ 7
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Table 3a. Estimated shell radius for random

dipoles model of Mars' magnetic spectrum in kin,

unscaled uncertainty, and misfit

Degrees With Cutoff Without Cutoff

Fitted r x s r× s

1-90 3343 + 7 0.4759 3344+ 7 0.3806

1-76 3334+ 9 0.4841 3336+ 8 0.3765

6-90 3350+ 7 0.2984 3350+ 7 0.2942

6-76 3344+10 0.2987 3344+10 0.2921

Table 3b. Estimated bali radius for random

dipoles model of Mars' magnetic spectrum in km,

unscaled uncertainty, and misfit.

Degrees With Cutoff Without Cutoff

Fitted G s G s

1-90 3395+ 7 0.3420 3396+ 7 0.3054

1-76 3395 + 9 0.3685 3397+ 9 0.3269

6-90 3394 + 8 0.3047 3394+ 8 0.2944

6-76 3394 +10 0.3309 3393 +10 0.3167

FIGURE CAPTION

Figure 1" Mean square magnetic induction on sphere of radius a, Rn(a ) in nT 2, from harmonics of

degree n for Earth (solid circles, aE = 6371.2 km [Sabaka et al., 2000]) and Mars (crosses, aM ----

3393.5 km [Purucker et al., 2000]). For Earth, curve shows sum of spectra from core sources

(3512.5 + 63.5 km radius) and crustal source shell of random dipoles (4.5 + 13.5 krn below aE).

For Mars, curve shows spectrum from crustal source shell of random dipoles (50.7 + 6.8 km

below aM). Evidently, Mars' core field has decayed away, yet its magnetic crust is deeper and far

stronger than Earth's.
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TABLES FROM APPENDIX

Table A. 1: Leveling radius from model CMP3

Degrees s _ Level Radius Offset

Fitted km km (%)

I-4 0.9093 2843 + 606 - 637 (18.3)

1-5 0.6230 2946 +368 - 534 (15.4)

1-6 0.4781 3010+249 - 470 (13.3)

1-7 0.3984 3073 + 129 - 407 (11.7)

I-8 0.3416 3033 + 137 - 447 (12.9)

1-9 0.3834 3137+125 -344(9.87)

1-10 0.3389 3154+ 101 -326(9.36)

1-11 0.3163 3186+ 85 -294(8.44)

1-12 0.2947 3209 + 73 - 271 (7.78)

1-13 0.3252 3259+ 69 -221 (6.35)

1-14 0.3363 3296+ 63 - 184 (5.29)

1-15 0.4312 3356+ 66 - 124 (3.57)

1-16 0.6178 3430+ 73 50 (1.44)

1-17 1.0009 3527+ 87 + 47 (1.35)

1-18 1.3637 3619+ 96 +I39 (3.99)

Table A.2: Leveling radius from model CMP3

Degrees s z Level Radius Offset

Fitted km km (%)

2-4 0.0797 4080 + 407 +600 (17.2)

2-5 0.1480 3592 +309 +112 (3.21)

2-6 0.1309 3420 + 196 - 60 (1.72)

2-7 0.1034 3369+129 -111(3.20)

2-8 0.1522 3226 + 119 - 254 (7.28)

2-9 0.1663 3313 + 104 - 167 (4.79)

2-10 0.1449 3296+ 81 - 184 (5.30)

2-11 0.1280 3307+ 65 - 173 (4.97)

2-12 0.1143 3313 + 54 - 167 (4.80)

2-I3 0.1334 3355 + 51 - 125 (3.59)

2-14 0.I387 3384+ 47 - 96 (2.77)

2-15 0.2128 3441+ 53 - 39 (1.12)

2-16 0.3686 3516+ 64 + 36 (1.02)

2-17 0.7063 3617+ 82 +137 (3.93)

2-18 1.0193 3711 + 93 +23I (6.64)
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